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• Network of distributed processors
• Can communicate with each other over point-to-point links

• Want to maintain a consistent view of the state of the system
• I.e., to reach agreement

• Challenge: some processors may fail, or be compromised and behave 
arbitrarily

• A consensus protocol allows the processors to reach agreement even 
in the presence of (a bounded number of) faults

Consensus/Byzantine agreement



• Many different ways to formulate the problem
• I.e., different ways to define the requirements

• Many different settings can be considered
• Communication model
• Fault model
• Prior setup
• Cryptographic assumptions

• Subtle changes in the requirements or the setting can have a 
significant impact on feasibility or efficiency of consensus

Consensus



• Begin by considering a simple setting
• Parties fixed in advance
• Synchronous communication network
• No prior setup

• Begin by considering simple requirements
• All processors begin holding some (possibly different) input – just a bit!
• All processors must terminate with the same (nontrivial) output

Consensus
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• Each processor Pi begins with an input xi

• After running the protocol, each processor must terminate with an 
output yi

• Agreement (consensus):
• Every correct processor must output the same value
• I.e., if Pi and Pj are both correct, then yi = yj

• Validity (non-triviality):
• If all correct processors begin holding the same input value, then they should 

all output that value
• I.e., if all correct Pi hold xi = v, then all Pi must output yi = v

Consensus requirements formalized



• Each processor sends the others its input
• Each processor outputs the majority value of all inputs

• Output default value (say, 0) if no majority

Strawman protocol
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• What does it mean for a processor to fail?
• Two common models

• Fail-stop model: processor crashes at an arbitrary point in its execution
• Byzantine (adversarial) model: processor behaves arbitrarily; actions of all 

faulty processors may be coordinated by a single adversary

Faults?
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Fail-stop case
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• Consensus is possible* iff t < n/3 of the processors may be adversarial

Feasibility?

*Assuming synchronous communication and no prior setup



Proof of impossibility
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Disagreement!



• So far, we have viewed consensus as a “one-shot” mechanism
• In real-world systems, processors must repeatedly agree on values 

over time
• No “termination”

• More generally, think in terms of maintaining agreement on an 
ordered list of values

• Commands to be executed
• Transactions

• Refer to the list as a “log” or “ledger”

Replicated state machines



Replicated state machines
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• Processors receive transactions over time, and commit to an ordered 
list of transactions over time

• Let ti[j] denote the transaction committed by processor i and index j
• ti[j] must be committed before tj[j+1]
• Once ti[j] is committed, it cannot be changed

• Agreement:
• Correct processors agree on committed values
• I.e., Pi and Pi’ are correct, and ti[j] and ti’[j] are both committed, then ti[j]=ti’[j]

• Liveness:
• A transaction received by a correct processor is eventually 

committed by all other correct processors

Requirements (informal)



• Paxos (1998) / Raft (2014)
• Tolerates < n/2 fail-stop faults in an asynchronous network

• PBFT (1999)
• Tolerates < n/3 Byzantine faults in an asynchronous network
• Relies on digital signatures, with necessary keys distributed in advance

Notable protocols



• Blockchain = protocol for realizing consensus

• Centralized consensus (with one processor/database) is trivial…
• Decentralized consensus has been studied since the 1970s…

• Why the recent surge in interest?

What is a blockchain?



• Nakamoto introduced a permissionless consensus protocol
• All prior protocols we have discussed (and almost all prior work) assumes a 

permissioned setting

• Permissioned: 
• Set of processors fixed; all processors aware of each other, and can be 

provisioned with other processors’ cryptographic keys, etc.
• Permissionless:

• Processors can come and go as they like!
• No one manages membership
• Processors not aware of all other processors

Why the interest in Blockchain (1)?



• One of the main challenges in the permissionless setting is handling 
Sybil attacks

• Will see later how Nakamoto consensus prevents this using proofs of work

• Sybil attacks:
• A compromised processor pretends to be multiple processors
• Even a single compromised processor can become the majority!

• Note some blockchain protocols assume the permissioned setting…

Permissionless setting



• Nakamoto consensus can theoretically exceed the classical security 
threshold!

• In network of fixed processors, all with same computational power, can 
tolerate t < n/2 faults

• Uses hash functions/computational assumptions

• Exercise: how does it circumvent the impossibility result?

Why the interest in Blockchain (2)?



• Add an additional property (tamper-proofness):
• Cannot easily tamper with the log maintained by the processors – even if all 

processors are malicious!

• This can be added on to existing protocols using hash functions, but 
(for the most part) was not explicitly considered before

Why the interest in Blockchain (3)?



(Cryptographic) hash functions



• Deterministic function H: {0,1}* → {0,1}n

• Arbitrary length inputs
• Fixed-length (short) output
• Efficient

Hash functions



• Collision-resistant
• “Random behavior”

• Proofs of work

Security properties



• Computationally infeasible to find two distinct inputs mapping to the 
same output

Collision resistance

H
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• What can we say about the hardness of finding collisions (in general) 
as a function of the output length n?

• Naïve attack
• Compute H(x1), …, H(xk) for k = 2n + 1
• Guaranteed to find a collision!
• Is this the best possible attack?

• “Birthday” attack
• Compute H(x1), …, H(xk) for random inputs and hope to find a collision
• For what value of k is a collision expected with high probability?
• Related to the birthday problem

Generic collision attacks



Birthday problem

N

Bins: days of the year (N=365)
Balls: k people

Bins: values in {0,1}n (N = 2n )
Balls: k hash-function computations

How many balls do we need
to have a 50% chance of a collision? 



• Theorem: the probability of a collision is O(k2/N)
• When k ≈ N1/2, probability of a collision is ≈ 50%

• Birthdays: 23 people suffice!
• Hash functions: O(2n/2) hash-function evaluations

• Need n = 2k to get security against attackers running in time 2k

• I.e., 256-bit output to get “128-bit” security
• Note that this is a lower bound; hash functions must be carefully designed!

Birthday bound



• Collision resistance implies that H(x) can “stand in” for x
• I.e., someone who obtains a reliable copy of H(x) cannot later be fooled into 

accepting a different value x’
• Refer to H(x) as a digest of x
• Note that H(x) is much smaller than x

• What if we want a digest for multiple values?

Hashes as digests



• Say we want to provide digests for x1, …, xk

• Approach 1: compute H(x1), …, H(xk)
• Verifying xi requires only xi
• Drawback: storage grows linearly in k

• Approach 2: compute H(x1, …, xk)
• This has constant storage
• Drawback: verifying xi requires all values

Digests for multiple values



Merkle trees

x1 x2 x3 x4

Only store the root!

x2

Verify…

O(log n) communication/computation!



Digests, abstractly…

(data)

H(   )

“Hash pointer”



Merkle trees
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“Linked list”

(data)

Prev: H(  )

(data)

Prev: H(  )

(data)

Prev: H(  )

H(  )

Modifying a block affects all subsequent blocks
(and the root digest)

This is what inspired the name “blockchain”!



• Roughly speaking, every evaluation of H on a new input should result 
in a “completely unpredictable” value H(x)

• In particular, finding x such that H(x) satisfies some property should 
take as long as choosing random strings until the property holds

“Random behavior”



• Puzzle instance defined by a (random) value r
• Solving a puzzle means finding an x such that H(r, x) has some 

property
• E.g., t most-significant bits all equal to 0

• If H is “random,” then solving a puzzle is hard
• E.g., expected time 2t

• Verifying a puzzle solution is easy!
• Just one hash evaluation

Proofs of work (PoW)



• No better strategy than trying random values

• Progress-free: don’t get closer to a solution the more work you have 
already done

• Parameterizable: easy to adjust puzzle difficulty

PoW properties



• MD5: 128-bit output length
• Too short by current standards
• Collision-resistance broken in 2005

• SHA-1: 160-bit output length
• Collisions found (using almost 280 work) in 2017

• SHA-256: 256-bit output length
• Other output lengths also possible

• SHA-3: variable output lengths supported

Hash functions in practice



Nakamoto consensus



• Nakamoto consensus is only one example of a blockchain protocol
• Though it was the one to start the craze…

• Nakamoto’s whitepaper proposed a cryptocurrency (Bitcoin)
• Useful to conceptually separate the blockchain layer and the cryptocurrency, 

though technically there is not a clean separation

• Some details have been simplified for the presentation
• Do not rely on this presentation for low-level details

Caveats



• Completely permissionless!
• Processors can join or leave the protocol at any time
• Processors do not need to know identities of all other participants, or even 

how many there are

• Synchronous communication

Nakamoto consensus (setting)



• Not a fully-connected network
• Messages are propagated by flooding

• Peer-to-peer network with random topology
• Low degree

• Nodes can join/leave at any time
• Drop non-responding nodes after timeout

Nakamoto consensus (network)



• All processors maintain a linked list data structure (“blockchain”)
• Initial block is a publicly known “genesis block”

• Processors continually exchange their copies of the blockchain
• Rule: switch to the longest (valid) blockchain

• When a processor hears about a new transaction, it tries to append a 
block containing that transaction to its local copy of the blockchain

• To do so, it must solve a proof of work
• This is called “mining” a new block

• If successful, it then broadcasts the updated blockchain

Nakamoto consensus (protocol overview)



Blockchain
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• In fact, a block can incorporate multiple transactions
• Increased rate for accepting transactions
• Reduced length of hash chain

• Transactions arranged in a Merkle tree!
• Merkle tree root included in the block

• Transactions sent separately

Blocks
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• A blockchain is only valid if:
• The initial block is the genesis block
• Each subsequent block contains a hash of the previous block
• Each block contains only valid transactions

• “Valid” here is application dependent
• Each block satisfies the “proof of work” criterion described next

Blockchain



• A block (prev, nonce, data) is valid only if H(prev, nonce, data) has t
leading zeros

• t is a parameter…more later

• Easy to verify validity!
• Note that prev is fixed by the previous block, and data is fixed by the 

set of transactions a processor wants to include in the current block
• Repeatedly choose nonce until satisfying the above
• Expected work 2t (on behalf of the entire network!) to mine the next block
• A given processor (or set of processors) mines the next block with probability 

proportional to its hash power!

Proofs of work





“Forks”
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Break ties arbitrarily



There may be temporary forks (disagreement)!





• Blocks in the blockchain can change!
• Values are never truly committed

• Always possible for there to be a fork, or for the current chain to be overtaken 
by a subsequent chain

Committed values





• Idea: set parameters such that a long fork is exceedingly unlikely
• In particular, ensure that the block-mining rate (which depends on the 

available hash power) is much slower than the block-propagation rate (which 
depends on the network)

• This ensures that blocks that are sufficiently deep in the blockchain
are exceedingly unlikely to ever change

Committed values



• Balance two competing goals
• Faster mining rate ⇒ txs incorporated faster
• Slower mining rate ⇒ better security

• In bitcoin, parameters set so a block is mined every ≈10 minutes
• Much slower than the network propagation rate

• Transactions that are 6 blocks deep are assumed to be committed

Block-mining rate



• Potential problem: when more processors join the network, the hash 
power increases and so the block-mining rate will increase!

• Solution: recalibrate the PoW difficulty every 2016 blocks (≈2 weeks)

• Network currently performs ~265 hashes per second…

Block-mining rate



• Sybil attacks are prevented!
• An attacker can “pretend” to be 1000 different processors…
• …but its total hash power is fixed

• Changing (transactions sufficiently deep in) the blockchain is difficult!
• Changing a transaction in a block at depth N requires mining N+1 new blocks

Why does this protocol work? (Informal)



• Assume attacker controls δ-fraction of hash power in the network
• Liveness:

• Assume a transaction is propagated to all (correct) processors
• Intuition: A transaction will be included in the blockchain when a correct 

processor successfully mines a block
• This happens (on average) every 1/(1-δ) blocks

• Agreement:
• Extremely unlikely for two forks to grow at the same rate forever

• Eventually, one overtakes the other
• Longer chain eventually adopted by everyone

Why does this protocol work? (Informal)



• Garay, Kiayias, and Leonardos: “The Bitcoin Backbone Protocol: 
Analysis and Applications” (2014)

• Assumptions:
• Fixed hash power, PoW difficulty
• Synchronous network
• Assumed upper bound on fraction of hash power controlled by an attacker 

(precise bound depends on various factors)

• These assumptions have been relaxed in subsequent work

Why does this protocol work? (Formally)



• Agreement:
• Say a correct processor has some block B at depth n
• When any correct processor ever has a block at that position, at depth n, then 

it will be the same block, except with probability 2-O(n)

• Liveness:
• If all correct processors learn about some transaction, then it is eventually 

incorporated into the blockchain of every honest processor (at depth n) 

Why does this protocol work? (Formally)



• Permissionless protocol
• Do you trust the majority or not?

• Computationally wasteful
• Proofs of work are expensive, environmentally unfriendly
• Storage requirements also a concern

Drawbacks of the protocol



Digital signature schemes

 From consensus to cryptocurrency

Bitcoin

Outline: Part 2



Signature schemes



• Signature schemes provide message integrity in the public-key setting

Signature schemes



• One party generates a pair of keys: public key pk and private key sk
• Public key is widely disseminated
• Private key is kept secret, and shared with no one

• Private key used by the party who generated it; public key can be 
used by anyone else

• Security must hold even if an attacker knows pk

The public-key setting



pk, sk

pk
pk

pk

Assume it is possible to get a reliable copy of pk



• Ensure that a message originated from the claimed party 
• Ensure that a message was not modified along the way

Message integrity



• Even after observing signatures on multiple messages, an attacker 
should be unable to forge a valid signature on any new message

Security



• Note that replay attacks are not prevented by signature schemes
• No stateless mechanism can prevent them

• Replay attacks are a potential real-world concern
• Must be dealt with at the application level

Replay attacks



• ECDSA signatures used
• Intended to provide 256-bit security

• These are based on elliptic curves, and are relatively short 
• Public keys are 256-bits long
• Signatures are 512-bits long

Signature scheme in Bitcoin



From blockchain to cryptocurrency



• Assume a replicated state machine protocol that allows processors to 
maintain a distributed ledger

• For now, exact details of the consensus protocol do not matter
• Later, we will assume Nakamoto consensus is used

• How can that be leveraged to build a cryptocurrency?
• With Bitcoin as the running example

Cryptocurrency?



• Use the ledger to keep track of account balances
• Transactions are used to transfer funds from one account to the other

• Need to ensure that only authorized parties can initiate a transaction
• Use digital signatures!

• Accounts are identified with public keys
• Owner of account knows the associated private key
• Transactions are signed statements transferring funds

Key ideas…



Example…

Transfer 10 from pkA to pkB, sA
Transfer 5 from pkB to pkC, sB

pkA: 20, pkB: 0, pkC: 0

Transfer 5 from pkB to pkA, sB

time



• Need to handle replay attacks
• Could detect by searching through the entire previous state…
• …but this would be inefficient

Drawbacks



• Track coins, not accounts
• More precisely, track unspent transaction outputs (UTXOs)

• Identified by some index
• Associated with a public key
• Owner of the UTXO knows the corresponding private key
• Only someone who knows the private key can use the UTXO

• When used, a UTXO must be spent in its entirety
• Any given UTXO is used only once
• But different UTXOs may be associated with the same public key

Alternate approach



• Public keys need not be associated with any real-world entity
• Rather, a public key is associated with a UTXO; only someone who 

knows the associated private key can spend that UTXO
• Keys can be disposable or long term…

Note…



• A transaction uses old UTXOs and creates new ones
• Old UTXOs = “inputs”
• New UTXOs = “outputs”
• Require

sum of inputs ≥ sum of outputs

Transactions



In: Out:15, pkB; 5, pkC; sA
In: Out: 5, pkD; sC

Out: 20, pkA

In:                  Out: 15, pkE; sB

time



• Since a UTXO must be used in its entirety, can pay any balance back to 
the same public key

• New UTXO, just same public key

• Can equivalently be a fresh public key with private key known by the 
same person

“Change”



• All processors keep track of current set of UTXOs at all tmes
• Verify that inputs to a transaction all correspond to a (different) UTXO
• Verify correctness of signatures
• Verify that sum of outputs ≤ sum of inputs

• Delete UTXOs used as inputs; create UTXO for each output

Transaction validity



• Blocks incorporate multiple transactions
• Transactions arranged in a Merkle tree
• Validity of transactions determined one-by-one, in order

Blocks
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• Transactions in Bitcoin can be more complex than described so far
• Bitcoin provides a simple, stack-based scripting language; input/ouput

UTXOs specify scripts
• Verifying a signature with respect to public key is just one example of 

a script

Transactions



• How are funds initially allocated in the system?
• How can new money be created?

Where does money come from?



• New coins created when new blocks are mined!
• Miners incorporate a special “coinbase” transaction in each block 

they mine
• Single input, pointing to nothing
• Single output (nominally miner’s public key)
• Value is the current block reward

Bitcoin’s solution



• Determined as part of the Bitcoin protocol
• Started at 50 BTC; halves every 210,000 blocks (~4 years)
• Finite supply of 21 million BTC!

Block reward



• Transactions can also specify transaction fees
• Using funds from the input UTXOs
• In fact, the fee is just (sum of the inputs –sum of the outputs)

• When a miner mines a block, the value of the coinbase transaction 
also includes the fees for all the transactions included in that block

Transaction fees



• For the blockchain to be secure, need hashing power in the network 
to be much greater than hashing power of any attacker

• But why should people participate in the protocol at all?

• Block reward encourages participation!
• Improves agreement guarantee

• Block reward encourages increased hash power
• E.g., more investment in computational resources

Bitcoin incentives



• What incentivizes miners to include transactions in blocks?
• Effort involved in learning about transactions
• Effort involved in incorporating transactions into blocks

• Transaction fees provide the incentive!
• Improves liveness guarantee

Bitcoin incentives



• Some work showing ways of “gaming” the Bitcoin protocol
• E.g., selfish mining
• Mining pools
• See my talk tomorrow

Game-theoretic considerations



• The Bitcoin ecosystem
• Mining hardware
• Mining pools
• Bitcoin wallets
• Efficiency aspects (e.g., off-chain transactions)

What did I leave out?



• I have only described one blockchain protocol and one cryptocurrency
• There are many, many more out there!

• From a blockchain to a global computer (“smart contracts”)
• Privacy aspects
• Alternate mechanisms (e.g., proof of storage, proof of stake, …)

What did I leave out?



Thank You!
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