
Blockchain/Bitcoin Fundamentals

Jonathan Katz

Blockchain

What is consensus?

Classical results on consensus

Cryptographic hash functions

Blockchain: Nakamoto consensus

Outline: Part 1

Digital signature schemes

 From consensus to cryptocurrency

Bitcoin

Outline: Part 2

Bitcoin

• Network of distributed processors
• Can communicate with each other over point-to-point links

• Want to maintain a consistent view of the state of the system
• I.e., to reach agreement

• Challenge: some processors may fail, or be compromised and behave
arbitrarily

• A consensus protocol allows the processors to reach agreement even
in the presence of (a bounded number of) faults

Consensus/Byzantine agreement

• Many different ways to formulate the problem
• I.e., different ways to define the requirements

• Many different settings can be considered
• Communication model
• Fault model
• Prior setup
• Cryptographic assumptions

• Subtle changes in the requirements or the setting can have a
significant impact on feasibility or efficiency of consensus

Consensus

• Begin by considering a simple setting
• Parties fixed in advance
• Synchronous communication network
• No prior setup

• Begin by considering simple requirements
• All processors begin holding some (possibly different) input – just a bit!
• All processors must terminate with the same (nontrivial) output

Consensus

Consensus

0

1 1

1 1

1

• Each processor Pi begins with an input xi

• After running the protocol, each processor must terminate with an
output yi

• Agreement (consensus):
• Every correct processor must output the same value
• I.e., if Pi and Pj are both correct, then yi = yj

• Validity (non-triviality):
• If all correct processors begin holding the same input value, then they should

all output that value
• I.e., if all correct Pi hold xi = v, then all Pi must output yi = v

Consensus requirements formalized

• Each processor sends the others its input
• Each processor outputs the majority value of all inputs

• Output default value (say, 0) if no majority

Strawman protocol

Consensus

0

1 1

1

1

1

1

0 0

• What does it mean for a processor to fail?
• Two common models

• Fail-stop model: processor crashes at an arbitrary point in its execution
• Byzantine (adversarial) model: processor behaves arbitrarily; actions of all

faulty processors may be coordinated by a single adversary

Faults?

Byzantine case

0

1 1

1

0

1

1

0 0

0

1

Fail-stop case

0

1 1

1 1

1

0 0

0

1

• Consensus is possible* iff t < n/3 of the processors may be adversarial

Feasibility?

*Assuming synchronous communication and no prior setup

Proof of impossibility

1

0

0

0

1

1

0

0

0

1

1

Disagreement!

• So far, we have viewed consensus as a “one-shot” mechanism
• In real-world systems, processors must repeatedly agree on values

over time
• No “termination”

• More generally, think in terms of maintaining agreement on an
ordered list of values

• Commands to be executed
• Transactions

• Refer to the list as a “log” or “ledger”

Replicated state machines

Replicated state machines

tx1 tx2 tx3

tx1 tx2 tx3

tx1 tx2 tx3

tx3

• Processors receive transactions over time, and commit to an ordered
list of transactions over time

• Let ti[j] denote the transaction committed by processor i and index j
• ti[j] must be committed before tj[j+1]
• Once ti[j] is committed, it cannot be changed

• Agreement:
• Correct processors agree on committed values
• I.e., Pi and Pi’ are correct, and ti[j] and ti’[j] are both committed, then ti[j]=ti’[j]

• Liveness:
• A transaction received by a correct processor is eventually

committed by all other correct processors

Requirements (informal)

• Paxos (1998) / Raft (2014)
• Tolerates < n/2 fail-stop faults in an asynchronous network

• PBFT (1999)
• Tolerates < n/3 Byzantine faults in an asynchronous network
• Relies on digital signatures, with necessary keys distributed in advance

Notable protocols

• Blockchain = protocol for realizing consensus

• Centralized consensus (with one processor/database) is trivial…
• Decentralized consensus has been studied since the 1970s…

• Why the recent surge in interest?

What is a blockchain?

• Nakamoto introduced a permissionless consensus protocol
• All prior protocols we have discussed (and almost all prior work) assumes a

permissioned setting

• Permissioned:
• Set of processors fixed; all processors aware of each other, and can be

provisioned with other processors’ cryptographic keys, etc.
• Permissionless:

• Processors can come and go as they like!
• No one manages membership
• Processors not aware of all other processors

Why the interest in Blockchain (1)?

• One of the main challenges in the permissionless setting is handling
Sybil attacks

• Will see later how Nakamoto consensus prevents this using proofs of work

• Sybil attacks:
• A compromised processor pretends to be multiple processors
• Even a single compromised processor can become the majority!

• Note some blockchain protocols assume the permissioned setting…

Permissionless setting

• Nakamoto consensus can theoretically exceed the classical security
threshold!

• In network of fixed processors, all with same computational power, can
tolerate t < n/2 faults

• Uses hash functions/computational assumptions

• Exercise: how does it circumvent the impossibility result?

Why the interest in Blockchain (2)?

• Add an additional property (tamper-proofness):
• Cannot easily tamper with the log maintained by the processors – even if all

processors are malicious!

• This can be added on to existing protocols using hash functions, but
(for the most part) was not explicitly considered before

Why the interest in Blockchain (3)?

(Cryptographic) hash functions

• Deterministic function H: {0,1}* → {0,1}n

• Arbitrary length inputs
• Fixed-length (short) output
• Efficient

Hash functions

• Collision-resistant
• “Random behavior”

• Proofs of work

Security properties

• Computationally infeasible to find two distinct inputs mapping to the
same output

Collision resistance

H

H

• What can we say about the hardness of finding collisions (in general)
as a function of the output length n?

• Naïve attack
• Compute H(x1), …, H(xk) for k = 2n + 1
• Guaranteed to find a collision!
• Is this the best possible attack?

• “Birthday” attack
• Compute H(x1), …, H(xk) for random inputs and hope to find a collision
• For what value of k is a collision expected with high probability?
• Related to the birthday problem

Generic collision attacks

Birthday problem

N

Bins: days of the year (N=365)
Balls: k people

Bins: values in {0,1}n (N = 2n)
Balls: k hash-function computations

How many balls do we need
to have a 50% chance of a collision?

• Theorem: the probability of a collision is O(k2/N)
• When k ≈ N1/2, probability of a collision is ≈ 50%

• Birthdays: 23 people suffice!
• Hash functions: O(2n/2) hash-function evaluations

• Need n = 2k to get security against attackers running in time 2k

• I.e., 256-bit output to get “128-bit” security
• Note that this is a lower bound; hash functions must be carefully designed!

Birthday bound

• Collision resistance implies that H(x) can “stand in” for x
• I.e., someone who obtains a reliable copy of H(x) cannot later be fooled into

accepting a different value x’
• Refer to H(x) as a digest of x
• Note that H(x) is much smaller than x

• What if we want a digest for multiple values?

Hashes as digests

• Say we want to provide digests for x1, …, xk

• Approach 1: compute H(x1), …, H(xk)
• Verifying xi requires only xi
• Drawback: storage grows linearly in k

• Approach 2: compute H(x1, …, xk)
• This has constant storage
• Drawback: verifying xi requires all values

Digests for multiple values

Merkle trees

x1 x2 x3 x4

Only store the root!

x2

Verify…

O(log n) communication/computation!

Digests, abstractly…

(data)

H()

“Hash pointer”

Merkle trees

(data) (data) (data) (data)

H() H() H() H()

H() H()

H()

“Linked list”

(data)

Prev: H()

(data)

Prev: H()

(data)

Prev: H()

H()

Modifying a block affects all subsequent blocks
(and the root digest)

This is what inspired the name “blockchain”!

• Roughly speaking, every evaluation of H on a new input should result
in a “completely unpredictable” value H(x)

• In particular, finding x such that H(x) satisfies some property should
take as long as choosing random strings until the property holds

“Random behavior”

• Puzzle instance defined by a (random) value r
• Solving a puzzle means finding an x such that H(r, x) has some

property
• E.g., t most-significant bits all equal to 0

• If H is “random,” then solving a puzzle is hard
• E.g., expected time 2t

• Verifying a puzzle solution is easy!
• Just one hash evaluation

Proofs of work (PoW)

• No better strategy than trying random values

• Progress-free: don’t get closer to a solution the more work you have
already done

• Parameterizable: easy to adjust puzzle difficulty

PoW properties

• MD5: 128-bit output length
• Too short by current standards
• Collision-resistance broken in 2005

• SHA-1: 160-bit output length
• Collisions found (using almost 280 work) in 2017

• SHA-256: 256-bit output length
• Other output lengths also possible

• SHA-3: variable output lengths supported

Hash functions in practice

Nakamoto consensus

• Nakamoto consensus is only one example of a blockchain protocol
• Though it was the one to start the craze…

• Nakamoto’s whitepaper proposed a cryptocurrency (Bitcoin)
• Useful to conceptually separate the blockchain layer and the cryptocurrency,

though technically there is not a clean separation

• Some details have been simplified for the presentation
• Do not rely on this presentation for low-level details

Caveats

• Completely permissionless!
• Processors can join or leave the protocol at any time
• Processors do not need to know identities of all other participants, or even

how many there are

• Synchronous communication

Nakamoto consensus (setting)

• Not a fully-connected network
• Messages are propagated by flooding

• Peer-to-peer network with random topology
• Low degree

• Nodes can join/leave at any time
• Drop non-responding nodes after timeout

Nakamoto consensus (network)

• All processors maintain a linked list data structure (“blockchain”)
• Initial block is a publicly known “genesis block”

• Processors continually exchange their copies of the blockchain
• Rule: switch to the longest (valid) blockchain

• When a processor hears about a new transaction, it tries to append a
block containing that transaction to its local copy of the blockchain

• To do so, it must solve a proof of work
• This is called “mining” a new block

• If successful, it then broadcasts the updated blockchain

Nakamoto consensus (protocol overview)

Blockchain

nonce1,
tx3

nonce2,
tx3

nonce3,
tx3

nonce1,
tx1

H()

nonce2,
tx2

H() H()

Genesis
block

• In fact, a block can incorporate multiple transactions
• Increased rate for accepting transactions
• Reduced length of hash chain

• Transactions arranged in a Merkle tree!
• Merkle tree root included in the block

• Transactions sent separately

Blocks

(root)
Prev: H() Prev: H() Prev: H()

H() (root)

tx2tx1

H() H()

• A blockchain is only valid if:
• The initial block is the genesis block
• Each subsequent block contains a hash of the previous block
• Each block contains only valid transactions

• “Valid” here is application dependent
• Each block satisfies the “proof of work” criterion described next

Blockchain

• A block (prev, nonce, data) is valid only if H(prev, nonce, data) has t
leading zeros

• t is a parameter…more later

• Easy to verify validity!
• Note that prev is fixed by the previous block, and data is fixed by the

set of transactions a processor wants to include in the current block
• Repeatedly choose nonce until satisfying the above
• Expected work 2t (on behalf of the entire network!) to mine the next block
• A given processor (or set of processors) mines the next block with probability

proportional to its hash power!

Proofs of work

“Forks”

nonce,
tx3

nonce,
tx1

Prev: H()

nonce,
tx2

Prev: H()

Prev: H()

nonce,
tx’3

Prev: H()

Break ties arbitrarily

There may be temporary forks (disagreement)!

• Blocks in the blockchain can change!
• Values are never truly committed

• Always possible for there to be a fork, or for the current chain to be overtaken
by a subsequent chain

Committed values

• Idea: set parameters such that a long fork is exceedingly unlikely
• In particular, ensure that the block-mining rate (which depends on the

available hash power) is much slower than the block-propagation rate (which
depends on the network)

• This ensures that blocks that are sufficiently deep in the blockchain
are exceedingly unlikely to ever change

Committed values

• Balance two competing goals
• Faster mining rate ⇒ txs incorporated faster
• Slower mining rate ⇒ better security

• In bitcoin, parameters set so a block is mined every ≈10 minutes
• Much slower than the network propagation rate

• Transactions that are 6 blocks deep are assumed to be committed

Block-mining rate

• Potential problem: when more processors join the network, the hash
power increases and so the block-mining rate will increase!

• Solution: recalibrate the PoW difficulty every 2016 blocks (≈2 weeks)

• Network currently performs ~265 hashes per second…

Block-mining rate

• Sybil attacks are prevented!
• An attacker can “pretend” to be 1000 different processors…
• …but its total hash power is fixed

• Changing (transactions sufficiently deep in) the blockchain is difficult!
• Changing a transaction in a block at depth N requires mining N+1 new blocks

Why does this protocol work? (Informal)

• Assume attacker controls δ-fraction of hash power in the network
• Liveness:

• Assume a transaction is propagated to all (correct) processors
• Intuition: A transaction will be included in the blockchain when a correct

processor successfully mines a block
• This happens (on average) every 1/(1-δ) blocks

• Agreement:
• Extremely unlikely for two forks to grow at the same rate forever

• Eventually, one overtakes the other
• Longer chain eventually adopted by everyone

Why does this protocol work? (Informal)

• Garay, Kiayias, and Leonardos: “The Bitcoin Backbone Protocol:
Analysis and Applications” (2014)

• Assumptions:
• Fixed hash power, PoW difficulty
• Synchronous network
• Assumed upper bound on fraction of hash power controlled by an attacker

(precise bound depends on various factors)

• These assumptions have been relaxed in subsequent work

Why does this protocol work? (Formally)

• Agreement:
• Say a correct processor has some block B at depth n
• When any correct processor ever has a block at that position, at depth n, then

it will be the same block, except with probability 2-O(n)

• Liveness:
• If all correct processors learn about some transaction, then it is eventually

incorporated into the blockchain of every honest processor (at depth n)

Why does this protocol work? (Formally)

• Permissionless protocol
• Do you trust the majority or not?

• Computationally wasteful
• Proofs of work are expensive, environmentally unfriendly
• Storage requirements also a concern

Drawbacks of the protocol

Digital signature schemes

 From consensus to cryptocurrency

Bitcoin

Outline: Part 2

Signature schemes

• Signature schemes provide message integrity in the public-key setting

Signature schemes

• One party generates a pair of keys: public key pk and private key sk
• Public key is widely disseminated
• Private key is kept secret, and shared with no one

• Private key used by the party who generated it; public key can be
used by anyone else

• Security must hold even if an attacker knows pk

The public-key setting

pk, sk

pk
pk

pk

Assume it is possible to get a reliable copy of pk

• Ensure that a message originated from the claimed party
• Ensure that a message was not modified along the way

Message integrity

• Even after observing signatures on multiple messages, an attacker
should be unable to forge a valid signature on any new message

Security

• Note that replay attacks are not prevented by signature schemes
• No stateless mechanism can prevent them

• Replay attacks are a potential real-world concern
• Must be dealt with at the application level

Replay attacks

• ECDSA signatures used
• Intended to provide 256-bit security

• These are based on elliptic curves, and are relatively short
• Public keys are 256-bits long
• Signatures are 512-bits long

Signature scheme in Bitcoin

From blockchain to cryptocurrency

• Assume a replicated state machine protocol that allows processors to
maintain a distributed ledger

• For now, exact details of the consensus protocol do not matter
• Later, we will assume Nakamoto consensus is used

• How can that be leveraged to build a cryptocurrency?
• With Bitcoin as the running example

Cryptocurrency?

• Use the ledger to keep track of account balances
• Transactions are used to transfer funds from one account to the other

• Need to ensure that only authorized parties can initiate a transaction
• Use digital signatures!

• Accounts are identified with public keys
• Owner of account knows the associated private key
• Transactions are signed statements transferring funds

Key ideas…

Example…

Transfer 10 from pkA to pkB, sA
Transfer 5 from pkB to pkC, sB

pkA: 20, pkB: 0, pkC: 0

Transfer 5 from pkB to pkA, sB

time

• Need to handle replay attacks
• Could detect by searching through the entire previous state…
• …but this would be inefficient

Drawbacks

• Track coins, not accounts
• More precisely, track unspent transaction outputs (UTXOs)

• Identified by some index
• Associated with a public key
• Owner of the UTXO knows the corresponding private key
• Only someone who knows the private key can use the UTXO

• When used, a UTXO must be spent in its entirety
• Any given UTXO is used only once
• But different UTXOs may be associated with the same public key

Alternate approach

• Public keys need not be associated with any real-world entity
• Rather, a public key is associated with a UTXO; only someone who

knows the associated private key can spend that UTXO
• Keys can be disposable or long term…

Note…

• A transaction uses old UTXOs and creates new ones
• Old UTXOs = “inputs”
• New UTXOs = “outputs”
• Require

sum of inputs ≥ sum of outputs

Transactions

In: Out:15, pkB; 5, pkC; sA
In: Out: 5, pkD; sC

Out: 20, pkA

In: Out: 15, pkE; sB

time

• Since a UTXO must be used in its entirety, can pay any balance back to
the same public key

• New UTXO, just same public key

• Can equivalently be a fresh public key with private key known by the
same person

“Change”

• All processors keep track of current set of UTXOs at all tmes
• Verify that inputs to a transaction all correspond to a (different) UTXO
• Verify correctness of signatures
• Verify that sum of outputs ≤ sum of inputs

• Delete UTXOs used as inputs; create UTXO for each output

Transaction validity

• Blocks incorporate multiple transactions
• Transactions arranged in a Merkle tree
• Validity of transactions determined one-by-one, in order

Blocks

(root)
Prev: H() Prev: H() Prev: H()

H() (root)

tx2tx1

H() H()

• Transactions in Bitcoin can be more complex than described so far
• Bitcoin provides a simple, stack-based scripting language; input/ouput

UTXOs specify scripts
• Verifying a signature with respect to public key is just one example of

a script

Transactions

• How are funds initially allocated in the system?
• How can new money be created?

Where does money come from?

• New coins created when new blocks are mined!
• Miners incorporate a special “coinbase” transaction in each block

they mine
• Single input, pointing to nothing
• Single output (nominally miner’s public key)
• Value is the current block reward

Bitcoin’s solution

• Determined as part of the Bitcoin protocol
• Started at 50 BTC; halves every 210,000 blocks (~4 years)
• Finite supply of 21 million BTC!

Block reward

• Transactions can also specify transaction fees
• Using funds from the input UTXOs
• In fact, the fee is just (sum of the inputs –sum of the outputs)

• When a miner mines a block, the value of the coinbase transaction
also includes the fees for all the transactions included in that block

Transaction fees

• For the blockchain to be secure, need hashing power in the network
to be much greater than hashing power of any attacker

• But why should people participate in the protocol at all?

• Block reward encourages participation!
• Improves agreement guarantee

• Block reward encourages increased hash power
• E.g., more investment in computational resources

Bitcoin incentives

• What incentivizes miners to include transactions in blocks?
• Effort involved in learning about transactions
• Effort involved in incorporating transactions into blocks

• Transaction fees provide the incentive!
• Improves liveness guarantee

Bitcoin incentives

• Some work showing ways of “gaming” the Bitcoin protocol
• E.g., selfish mining
• Mining pools
• See my talk tomorrow

Game-theoretic considerations

• The Bitcoin ecosystem
• Mining hardware
• Mining pools
• Bitcoin wallets
• Efficiency aspects (e.g., off-chain transactions)

What did I leave out?

• I have only described one blockchain protocol and one cryptocurrency
• There are many, many more out there!

• From a blockchain to a global computer (“smart contracts”)
• Privacy aspects
• Alternate mechanisms (e.g., proof of storage, proof of stake, …)

What did I leave out?

Thank You!

	Slide Number 1
	Outline: Part 1
	Outline: Part 2
	Consensus/Byzantine agreement
	Consensus
	Consensus
	Consensus
	Consensus requirements formalized
	Strawman protocol
	Consensus
	Faults?
	Byzantine case
	Fail-stop case
	Feasibility?
	Proof of impossibility
	Replicated state machines
	Replicated state machines
	Requirements (informal)
	Notable protocols
	What is a blockchain?
	Why the interest in Blockchain (1)?
	Permissionless setting
	Why the interest in Blockchain (2)?
	Why the interest in Blockchain (3)?
	Slide Number 25
	Hash functions
	Security properties
	Collision resistance
	Generic collision attacks
	Birthday problem
	Birthday bound
	Hashes as digests
	Digests for multiple values
	Merkle trees
	Digests, abstractly…
	Merkle trees
	“Linked list”
	“Random behavior”
	Proofs of work (PoW)
	PoW properties
	Hash functions in practice
	Slide Number 42
	Caveats
	Nakamoto consensus (setting)
	Nakamoto consensus (network)
	Nakamoto consensus (protocol overview)
	Blockchain
	Blocks
	Slide Number 49
	Blockchain
	Proofs of work
	Slide Number 52
	“Forks”
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Committed values
	Slide Number 58
	Committed values
	Block-mining rate
	Block-mining rate
	Why does this protocol work? (Informal)
	Why does this protocol work? (Informal)
	Why does this protocol work? (Formally)
	Why does this protocol work? (Formally)
	Drawbacks of the protocol
	Outline: Part 2
	Slide Number 68
	Signature schemes
	The public-key setting
	Slide Number 71
	Message integrity
	Security
	Replay attacks
	Signature scheme in Bitcoin
	Slide Number 76
	Cryptocurrency?
	Key ideas…
	Example…
	Drawbacks
	Alternate approach
	Note…
	Transactions
	Slide Number 84
	“Change”
	Transaction validity
	Blocks
	Slide Number 88
	Transactions
	Where does money come from?
	Bitcoin’s solution
	Block reward
	Transaction fees
	Bitcoin incentives
	Bitcoin incentives
	Game-theoretic considerations
	What did I leave out?
	What did I leave out?
	Slide Number 99

